本站首页    管理页面    写新日志    退出


«November 2025»
1
2345678
9101112131415
16171819202122
23242526272829
30


公告
暂无公告...

我的分类(专题)

日志更新

最新评论

留言板

链接

Blog信息
blog名称:
日志总数:111
评论数量:190
留言数量:-24
访问次数:642583
建立时间:2007年4月21日




[推荐系统]推荐系统:Recommender Systems 简介【转帖】
网上资源

赵勇 发表于 2007/4/21 23:51:33

推荐系统:Recommender Systems 简介 本文是关于推荐系统的系列研究文章之一,其他内容将陆续发布。这些内容,大多数来自我在2004年底完成的一篇项目方案建议书。放在这里,抛砖引玉,供大家讨论之用。------------------------------------------------- 一、引言 Internet的迅猛发展将人类带入了信息社会和网络经济时代,对企业发展和个人生活都产生了深刻的影响。一方面,基于Internet的虚拟企 业不再需要像传统的物理环境下企业那样的实体投资,企业与顾客、供应商等建立起更直接的联系,电子商务模式为企业发展提供了更多的机会;同时, Internet的发展正在极大地改变我们每个人的生活,人们不出家门就可随心所欲地得到自己想要的商品,网上购物的经历让我们感受到电子商务带来的惊 喜。 在电子商务的虚拟环境下,商家所提供的商品种类和数量非常多,用户不可能通过一个小小的计算机屏幕一眼就知道所有的商品,用户也不可能象在物理环境 下那样检查挑选商品。因此,需要商家提供一些智能化的选购指导,根据用户的兴趣爱好推荐用户可能感兴趣或是满意的商品,使用户能够很方便地得到自己所需要 得到的商品。而且,从现实经验来看,用户的需求经常是不明确的、模糊的,可能会对某类商品有着潜在的需求,但并不清楚什么商品能满足自己的模糊需求。这 时,如果商家能够把满足用户模糊需求的商品推荐给用户,就可以把用户的潜在需求转化为现实的需求,从而提高产品的销售量。 在这种背景下,推荐系统(Recommender Systems)应运而生,它是根据用户的特征,比如兴趣爱好,推荐满足用户要求的对象,也称个性化推荐系统(Personalized Recommender Systems)。实际中应用最多的,是在网上购物(尤其是B2C类型)环境下的、以商品为推荐对象的个性化推荐系统,它为用户推荐符合兴趣爱好的商品, 如书籍,音像等。 二、概念 现在被广泛引用的推荐系统(Recommender System)的定义是Resnick & Varian 在1997年给出的:“它是利用电子商务网站向客户提供商品信息和建议,帮助用户决定应该购买什么产品,模拟销售人员帮助客户完成购买过程”。 推荐有三个组成要素:推荐候选对象、用户、推荐方法,如图1所示。推荐活动在我们日常生中普遍存在,根据不同的推荐对象和推荐方法,推荐活动形式多 样,如,超市购物导购员为用户推荐用户喜爱的产品,提高销售能力;现实生活中朋友间相互推荐喜爱的电影;推销员向用户推销产品等,都是推荐活动,可以说, 只要存在多个候选对象,就存在选择问题,存在选择就有推荐问题存在。 500)this.width=500'> 三、作用 个性化推荐的最大的优点在于,它能收集用户特征资料并根据用户特征,如兴趣偏好,为用户主动作出个性化的推荐。而且,系统给出的推荐是可以实时更新 的,即当系统中的商品库或用户特征库发生改变时,给出的推荐序列会自动改变。这就大大提高了电子商务活动的简便性和有效性,同时也提高了企业的服务水平。 总体说来,一个成功的个性化推荐系统的作用主要表现在以下三个方面:1) 将电子商务网站的浏览者转变为购买者:电子商务系统的访问者在浏览过程中经常并没有购买欲望,个性化推荐系统能够向用户推荐他们感兴趣的商品,从而促成购买过程。2) 提高电子商务网站的交叉销售能力:个性化推荐系统在用户购买过程中向用户提供其他有价值的商品推荐,用户能够从系统提供的推荐列表中购买自己确实需要但在购买过程中没有想到的商品,从而有效提高电子商务系统的交叉销售。3) 提高客户对电子商务网站的忠诚度:与传统的商务模式相比,电子商务系统使得用户拥有越来越多的选择,用户更换商家极其方便,只需要点击一两次鼠标就可以在 不同的电子商务系统之间跳转。个性化推荐系统分析用户的购买习惯,根据用户需求向用户提供有价值的商品推荐。如果推荐系统的推荐质量很高,那么用户会对该 推荐系统产生依赖。因此,个性化推荐系统不仅能够为用户提供个性化的推荐服务,而且能与用户建立长期稳定的关系,从而有效保留客户,提高客户的忠诚度,防 止客户流失。 个性化推荐系统具有良好的发展和应用前景。目前,几乎所有的大型电子商务系统,如Amazon、eBay等,都不同程度的使用了各种形式的推荐系 统。各种提供个性化服务的Web站点也需要推荐系统的大力支持。在日趋激烈的竞争环境下,个性化推荐系统能有效的保留客户,提高电子商务系统的服务能力。 成功的推荐系统会带来巨大的效益。 四、现有推荐系统 目前,推荐系统已经运用到多个行业中,推荐对象包括书籍、音像、网页、文章、新闻等,如表1。大多数的推荐系统主要应用在电子商务和Web中,其中 已应用到商业中的推荐系统主要有电子商务、电影和音乐等领域。这反映推荐系统想要运用到商业中,必须能够为用户提供一个确实有价值的推荐功能,从而为商业 企业带来一定的经济价值。 表1 主要推荐系统一览表 领域 推荐系统 电子商务 Amazon.com,eBay,Levis,Ski-europe.com 网页 Fab,Foxtrot,ifWeb,MEMOIR,METIOREW,ProfBuilder,QuIC,Quickstep,R2P,Siteseer,SurfLen 音乐 CDNOW,CoCoA,Ringo 电影 Moviefinder.com,MovieLens,Reel.com 新闻过滤 GroupLens,PHOAKS,P-Tango


阅读全文(1926) | 回复(0) | 编辑 | 精华
 



发表评论:
昵称:
密码:
主页:
标题:
验证码:  (不区分大小写,请仔细填写,输错需重写评论内容!)



站点首页 | 联系我们 | 博客注册 | 博客登陆

Sponsored By W3CHINA
W3CHINA Blog 0.8 Processed in 0.484 second(s), page refreshed 144794050 times.
《全国人大常委会关于维护互联网安全的决定》  《计算机信息网络国际联网安全保护管理办法》
苏ICP备05006046号